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Tensile creep compliances have been determined for PVC over a wide range of times (t = 10 s to l06 s) 
at 23°C. Results were obtained on samples of different age characterized by the elapsed time t~ between 
quenching from 85°C and the instant of load application. Various empirical functions were employed to 
model the data from both short-term (t ~< 0.2te) and long-term (t > 0.2te) tests in terms of compliance 
contributions from secondary (fl) and glass-rubber (ct) retardation regions. Results of these analyses 
suggest that physical ageing produces a decrease in strength of the fl-process, an increase in average 
retardation time for the ~-process and negligible changes in the widths of the respective retardation time 
distributions. Comments are made on the structural significance of the results for the fl-process and on 
the validity of functions used to describe the creep curves. 
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I N T R O D U C T I O N  

In previous publications ~-s we have considered the 
physical ageing and creep of glassy polymers after 
cooling from a temperature To to the temperature T 
( Tp <~ T < Tg < T o) at which the ageing and subsequent 
creep experiments are performed. Here Tg is the glass 
transition temperature and Tp is the temperature at which 
the secondary (fl) relaxation region is observed in low 
frequency dynamic tests. The age of a polymer sample 
at the start of a creep test is specified by the elapsed time 
t e between cooling from T O to T and the instant of load 
application. 

Over wide ranges of creep time t the tensile creep 
compliance D(t)  can be expressed in the form: 

D(t)  = Duo + Do(t) + D~(t) (1) 

where Duo is the unrelaxed compliance at short times 
and D 0(t) and D=(t) are respective compliance 
contributions from overlapping secondary (fl) and 
glass-rubber (~) retardation processes. During short- 
term creep tests (t ~< 0.2re) changes in age state of the 
polymer are negligible and the following empirical 
expressions were found convenient in modelling the data 
for several polymers 2-5 : 

(t/zo)"[ (t/zo)" + cos(mz/2)]  
Do(t) = (DR 0 - -  Duo) 1 + 2(t/zp)" cos(mr/2) + (t/zo) 2" 

= aDa~ba (t) (2) 

and 

D~(t) = (DR~ -- DR0)[1 -- exp -- (t/z~) m] 

= ADrift(t)  (3) 

In these equations DR0 and DR~ a r e  the relaxed 
compliances of the /3- and a-processes, respectively, 
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ADo( = DR# - -  Dua) and AD~( = DR~ - DR#) are the 
retardation strengths and z 0 and z~ are mean retardation 
times. The constants n (0 < n ~< 1) and m (0 < m ~< 1) 
are distribution parameters which decrease in magnitude 
as the widths of the respective fl- and a-retardation 
spectra increase. Note that the creep functions O0 (t) and 
~b~ (t) are consistent with the well known Cole-Cole  and 
Williams Watts retardation functions respectively 5'6. 

The influence of physical ageing on short-term creep 
may be considered in terms of possible variations with 
te in AD o and AD~ (or limiting compliances Du~, DRt~ and 
DR~), retardation times and distribution parameters. For 
secondary processes in glassy polymers, available 
evidence 5'v-9 suggests that za and n are essentially 
independent of t e. There are differing views, however, as 
to whether ADo remains constant 7 or decreases 
significantly 5'8'9 with increasing te. 

For  the glass-rubber retardation, it is widely accepted 
that physical ageing produces an increase in retardation 
time z, and that AD= and the shape of the distribution 
of retardation times and hence the parameter m are 
unaffected 1°. This conclusion is consistent with the 
success at superposing short-term D=(t) versus log t 
curves, determined at different te, by horizontal shifts 
along the log t axis 1. However these curves may also be 
superposed by relative vertical scalings, indicating that 
AD~ could decrease with increasing t~. It has also been 
claimed 11 that physical ageing gives rise to some 
broadening of the a-retardation, corresponding to a 
decrease in m. 

If AD= is assumed to be unaffected by ageing, then the 
following relation is also convenient for modelling 
short-term creep in the glass rubber region of 
amorphous polymers : 

O(t)  = [Duo + D0(t)] exp(t/ to)  7 (4) 

Here the relaxation time to and distribution parameter 7 
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(0 < ~ ~< 1 ) for the a-process may each depend on re. For 
negligible overlap between the//- and a-regions, equation 
(4) becomes: 

D(t) = DR# e x p ( t / t o )  ~ (5) 

This equation has been widely employed by Struik 1° and 
is consistent with the stress relaxation function, 
exp - (t/to) r, proposed by Kohlrausch ~1'12. 

The validity of empirical functions and age-dependence 
of retardation parameters for the a-process can be further 
explored through an analysis of long-term (t > 0.2to) 
creep data. This requires modifications to equations (2), 
(3), (4) and (5) to allow for possible variations in 
parameters due to further ageing during the creep 6. In 
this context, long-term creep in amorphous polymers has 
been predicted with reasonable accuracy from short-term 
data on the basis of equation (5) assuming 3'5 that AD~ 
and 7 are constant and that t o increases with t. For 
semicrystalline poly (butylene terephthalate )4, long-term 
creep involving the glass-rubber process was predicted 
quite accurately using a modification to equation (3) 
assuming that z~ increased with t at constant AD~ and 
m. However, no predictions have been published of the 
long-term creep of glassy polymers on the basis that AD, 
may decrease with increasing age. 

To obtain further insight into the quantitative effects 
of physical ageing, and the validity of empirical creep 
functions for glassy polymers, detailed analyses have 
recently been undertaken of short-term and long-term 
creep data for PVC. The data were obtained over a wide 
time range (10 -s to 106s) at low stress levels 
(~< 5.1 MPa)  using a combination of static and dynamic 
techniques. In this paper the data and the analyses are 
presented and discussed. The results have an important 
bearing on the prediction of long-term creep from 
short-term tests and on the non-linear creep behaviour 
at high stresses which is discussed in a separate 
publication ~ a. 

EXPERIMENTAL 

Material and procedures 
The PVC (ICI Darvic) was obtained in the form of a 

6 mm thick, transparent sheet from Amari Plastics. It had 
been stored in the laboratory for a period of about 10 
years before commencing the present project. Strips of 
different dimensions were machined from the sheet for 
the various dynamic and creep measurements. The 
measured density of original specimens at 23°C was 
1387kgm -3. A loss factor versus temperature plot, 
determined by a dynamic mechanical method at 1 Hz, 
exhibited maxima at T, ( ~ Tg) = 84°C and Tp = - 50°C. 

Before making the creep and dynamic measurements, 
specimens were heated to the temperature T O = 85°C for 
a period of 30 min to erase previous ageing effects. They 
were then quenched in water at room temperature and 
stored in air at 23°C for periods of elapsed time t, ranging 
from 2.5-240h before testing. One specimen was 
quenched in air at room temperature to assess, on the 
basis of audiofrequency measurements, whether internal 
stresses might be affecting data for the water-quenched 
specimens. 

Measurement of creep compliance 
For creep times t >t 1 s, D(t) values at 23°C were 

obtained from measurements 6 of the time-dependent 

extension of strips subjected to a constant stress of 
5.1 MPa. This stress level produced quite low strains 
(0.15-0.30%) and it was thus considered that the 
viscoelastic behaviour should be approximately linear. 

In the time range 10-s-10 s, the creep compliances 
were derived from measurements 6 of the dynamic storage 
compliance D'(co) at frequencies f(=~o/21t) between 
0.01 Hz and 5 MHz. The dynamic techniques comprised 14 
a tensile non-resonance method (0.01-60 Hz), audio- 
frequency flexural resonance (100Hz to 4kHz)  and 
longitudinal resonance (5 -12kHz)  methods, and an 
ultrasonic wave propagation technique (1-5 MHz). The 
very low strain amplitudes (1 x 10 -4 to 6 x 10-2%) in 
the dynamic experiments ensured that the viscoelastic 
behaviour was accurately linear. From the dynamic data, 
creep compliances at t = 0.63/09 were obtained using the 
approximation 5'6 : 

D(0.63/to) = D'(o)) (6) 

Data obtained by the different methods, after applying 
corrections for various effects, generally agreed to within 
2%. 

ANALYSIS OF SHORT-TERM CREEP DATA 

Figure 1 shows short-term creep curves covering up to 
13 decades of time for three PVC samples of different te. 
The data for t e = 10 years were obtained on specimens 
from the original sheet. The elapsed time of 10 years is 
an estimate based on the storage time between receiving 
the sheet and performing the measurements, with the 
assumption that the material had been cooled from 
temperatures above Tg during processing just prior to 
receipt. 

Good agreement is seen in Figure 1 between data 
obtained by the different techniques. The time ranges 
corresponding to the secondary (fl) retardation region 
and the onset of the glass-rubber (ct) region are 
indicated. Only a small degree of overlap is observed 
between the ct- and//-regions, a fairly well-defined plateau 
being evident at intermediate times. The level of the 
plateau, which corresponds to DRp, decreases with 
increasing te. 

The fl-retardation region 
In the //-region, the creep curves for PVC are quite 

symmetrical in shape (Fioure 1 ). Following the method 
developed for other polymers 3,6, we have therefore 
modelled the data in this region using equations ( 1 ) (with 
D,(t) = 0) and (2). These equations predict that plots 
of D (t) versus log t in the//-region are symmetrical about 
an inflection point at time T 0. 

In fitting the equations to the PVC data, z 0 values 
were first derived from experimental plots of dynamic 
loss compliance D" versus l o g f  using r0 = 0.63~c = 0.63/ 
2rtfmax = 0.1/fm,x. Here rc is the Cole-Cole retardation 
time and fm,x is the frequency of maximum D" for the 
//-process. From the D"-logf  plots shown in Figure 2 
we find that fro,,, and hence z0, is essentially independent 
ofte and obtain va = 10 -51 s. The shape of the loss peak 
in Figure 2, and thus the value of n, also seems largely 
unaffected by ageing. However, the decrease in area of 
the peak with increasing te is consistent with a decrease 
in AD o which is also evident in Figure 1. 

Regarding the t¢ dependence of AD 0, Figure 3 shows 
plots of log[D( t ) -Duo]  versus log t~ at different 
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Figure 1 Creep curves at 23°C for PVC at different states of physical ageing characterized by the elapsed time te after quenching from 85°C. The 
techniques used to obtain the data were: [[], ultrasonic wave propagation; V ,  audiofrequency longitudinal resonance; A,  audiofrequency flexural 
resonance; O,  tensile non-resonance; O,  tensile creep. ~t and fl indicate the time ranges over which the ~t- and fl-retardation processes are active. 
The theoretical curves ( ) were calculated using equations ( 1 ), (2) and (7), with D, (t) = 0, and represent the estimated fl-contributions to the creep 
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Tensile loss compliance D" as a function of frequency f in the fl-region for three elapsed times te. Symbols as in Figure 1 

(essentially constant) creep times corresponding to 
various audiofrequency resonance modes of vibration. A 
value ofDvp = 0.210 G P a -  1 was estimated from the very 
short time data in Figure 1 and was assumed to be 
independent of te. It will be noted that the plots in Figure 
3 are linear and parallel and correspond to short times 
at which D=(t) is probably negligible. In terms of 
equations (1) and (2), with za, n and hence ~bp(t) 
independent of t~, this result is consistent with the 

relationship : 

ADp = Bt~ k (7) 

Here B and k are constants, the value k = 0.024 being 
obtained as the gradient of the lines in Figure 3. Using 
the values of zp, Dua and k given above, B and n values 
were then determined by optimizing the fits of equations 
(1) and (2) to creep data over the time range 10 -8 to 
10-3s  for which D,(t) was considered negligible. 
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Figure 3 Plots  of l o g [ D ( t )  - Duo ] v e r s u s  log t e a t  six cons tan t  creep t imes t in the fl-region : O ,  da ta  for a wa te r -quenched  sample  from flexural  
resonance  measu remen t s  on m o d e  1 (t  = 6.6 x 10 -4  s),  mode  2 (t  = 2.3 x 10 -4  s), mode  3 (t = 1.2 x l 0  -4  s), mode  4 (t  = 7.2 x 10 - s  s)  and  m o d e  
5 (t = 4.8 x 10-  s s ) ;  A ,  co r re spond ing  flexural  resonance  da ta  for an  a i r -quenched  sample  ; O ,  da t a  for a wa te r -quenched  sample  from long i tud ina l  
resonance  measu remen t s  on m o d e  1 (t  = 1.8 x l 0  -~ s) 

Figure 1 illustrates the fits obtained to data at three 
elapsed times with B = 0.125 GPa -1 s k and n = 0.35. 

With regard to the structural significance of these 
results, Figure 3 shows that data obtained for the 
air-quenched PVC specimen agree well with results for 
the water-quenched material. This indicates that the 
results were not influenced by the existence of any internal 
stresses in the specimens 7. Furthermore, the value of 
0.024 for k suggests that ADo, and hence the number of 
relaxing groups responsible for the fl-process, decreases 
by 5.5% per decade of elapsed time. Since z 0 and n are 
essentially independent of t~, the mobilities of those 
groups which remain active are unchanged. 

One interpretation of these results is that the active 
groups reside in certain loosely-packed regions which 
are slowly eliminated by main-chain rearrangements 
involved in the ageing process 9. The results may 
alternatively be considered in terms of Struik's theory of 
secondary relaxations 15. This is based on the two- 
potential-well model and accounts for the coupling of 
relaxing groups to the glassy environment. According 
to this theory (equation (5.62) of ref. 15) the number of 
active 'type 2' groups, and hence AD o , is approximately 
proportional to exp - (AE/4RTg) .  Here AE is the 
coupling energy (AE >> RTg) and it is assumed that the 
conformational energy AUg for an isolated group is zero. 
During physical ageing, a decrease in the number of type 
2 groups could thus occur through slow rearrangements 
of the environment producing a decrease in Tg (the 
structural or fictive temperature) and a possible increase 
in AE. Assuming that Tg decreases by 2 K (or 0.6%) per 
decade of elapsed time16and that AE/4RTg ,~ 3 (ref. 15), 
then AD o would decrease by 5.5% per decade of elapsed 
time for an increase in AE of about 1.2%. Since these 
changes in Tg and AE would have a negligible effect 15 
on z 0, our results may be consistent with Struik's theory. 
Note, however, that Struik failed to detect any change 

in AD o with age state and suggested that each relaxing 
group is completely coupled to its environment (implying 
that AE is unaffected by ageing). 

The a-retardation region 
The compliance contribution D= (t) in short-term tests 

was obtained using equation (1) by subtracting 
extrapolated values of Duo + D o (t), derived with the aid 
of equations (2) and (7), from the measured D(t). The 
resulting a-creep curves covered only the short-time tail 
of the a-region where (t/z~)'<< 1 and equation (3) 
becomes: 

logD=(t) = logAD= + m l o g t -  mlogz ,  (8) 

This equation predicts that plots of log D,(t) versus log t 
should be linear and of slope m. Such plots for PVC at 
different elapsed times (Figure 4) were linear and parallel 
within experimental error and thus yielded an m value 
(0.324) which is independent of t e. Some departure from 
linearity at short creep times is ascribed to the 
magnification of experimental errors in determining very 
small D,(t) values. The constancy of rn implies that the 
width of the a-retardation spectrum is unaffected by 
ageing. 

Since the plots in Figure 4 are parallel, it also follows 
that they can be superposed by either: (a) vertical shifts, 
corresponding to a decrease in AD= with increasing te at 
constant z,; or (b) horizontal shifts, corresponding to 
an increase in T, with increasing t= at constant AD,; or 
(c) a combination of vertical and horizontal shifts. 
Therefore it is not possible to establish from the 
short-term data whether ageing involves changes in ADo, 
z, or both. However the long-term creep behaviour, 
which is considered in a subsequent section, can help to 
distinguish between the different ageing effects. As a basis 
for the long-term creep predictions, the data in Figure 4 
have been modelled in terms of cases ( a ) and (b) above. 
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Figure 5 Log z, v e r s u s  log t e : (3, da t a  f rom shor t - t e rm creep tests ; 0 ,  
results  f rom the shor t - te rm regions of long- te rm tests ; - - - ,  ca lcu la ted  
using equa t ion  ( 1 1 ) w i t h / l  = 1, Alw = 5 × 107 s and  A2w = 1.08 x 104; 
- - -  , ca lcu la ted  using e q u a t i o n  (11) wi th/~ = 0.95, A lw  = 3 x 107 s 
and  A2w = 2.07 × 104s 1-u 

With these analyses it was recognized that equation 
(3) should apply only to the short-time part of the 
glass-rubber region arising from local segmental 
motions ~7'~8. It could not describe the behaviour over 
those parts of the region attributed to longer range 
Rouse-Bueche chain modes. Since contributions to D, (t) 
from the local process are not well understood the chosen 

values for AD, and the corresponding z, must be 
arbitrary. However, values of AD~ between about 10DR/~ 
and 100DRa were considered appropriate, since these are 
substantially less than the total compliance change 
(~1000DRa) typically obtained for the glass-rubber 
process. It should also be noted that the time range over 
which equation (3) can accurately model the data is 
insensitive to the AD, value employed. 

Case (a):  AD, variable, z,  constant. In this case a value 
AD, = 3 G P a -1  ~ 10DR~ was selected for t~ = 2.5 h. A 
value of z, = 1.60 x 10~s was then derived from the 
intercept (log AD, - m log z,) in Figure 4, obtained by 
extrapolating the plot for t e = 2.5 h to the ordinate at 
log t = 0. Assuming that this value of r ,  is independent 
of t~, the AD, values for other t¢ values were determined 
from the other intercepts in Figure 4. It was found that 
log AD~ decreases approximately linearly with log t~ 
suggesting a relationship of the form : 

AD~ = Qt~ r (9) 

where r = 0.293 and Q = 45.0 G P a - x  s r. 

Case (b): % variable, AD, constant. Using an arbitrary 
constant value of 3 G P a - 1  for AD,, the value of r,  at 
each te value was determined from the intercepts at 
log t = 0 in Figure 4. A plot of log r ,  versus log t e (Figure 
5) is slightly curved with a gradient which increases 
somewhat with increasing re. Over limited ranges of t¢, 
the plot is approximately linear and can be fitted by the 
equation : 

z~ = Awt~ a (10) 

with the constants A w and #a dependent on the te range 
considered. Values for the apparent ageing rate #, 
increase, for example, from 0.83 for the t, range 2.5 24 h 
to 0.90 for the te range 2 .5-240h.  These results are 
consistent with the observations of Striuk 1° which further 
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Figure 6 Plots of log ln{D(t) /[Du¢ + Da(t)]} versus log t from short-term tests in the c~-region at different elapsed times t~. The straight lines 
each have a gradient 7 = 0.31 

suggest that the log %- log  t~ plot becomes accurately 
linear at long t~ with a gradient close to unity• On this 
basis the equation: 

z~ = Alw + A2wt~ u (11) 

where Atw, A2 w and # are constants, has been used to 
model the variation of z= over a wide range of t,. Note 
that A lw corresponds to the retardation time immediately 
following the quench (te = 0) and that # is the slope of 
the log z , - log  t, plot in the linear region at long t,. Plots 
of z, versus t~ were approximately linear using # = 1 and 
Struik 's  value t° of p = 0.95, so that values of A2w could 
be obtained as the slopes and Atw as the intercepts at 
t~ = O. Figure 5 gives the values of these parameters and 
illustrates the fits obtained to the log z=-log t, plots. 

Application of the Struik-Kohlrausch function. Assuming 
that AD= is unaffected by ageing, and need not be 
considered in the analysis, the creep behaviour in the 
a-region can also be modelled according to equation (4). 
Since this can be expressed in the form: 

logln{D(t)/[Dua + D a ( t ) ] } = 7 1 o g t -  71Ogto (12) 

it predicts that plots of log ln{D(t)/[Dua + Da(t)]}  
versus log t should be linear and of slope 7. Figure 6 
shows that the plots for PVC are linear and parallel, 
except for the region at short times where the 
function log In { D ( t ) / [  Dut ~ + D~ (t)]  } is subject to large 
experimental error. F rom these plots we obtain 7 = 0.31 
and again deduce that the distribution parameter  is 
essentially independent of t,. The value of t o at each t e 
was obtained from the intercept produced by extrapolating 
the plot to the ordinate at log t = 0 or to the abscissa at 
log ln{O(t)/[Dvp + Dt~(t)] } = O. 

The log to-log te plot (Figure 7) exhibits a slight 
curvature similar to that in Fioure 5 but over limited te 
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Figure 7 Dependence of the relaxation time, to, upon the elapsed time 
te : ©, results from short-term creep tests; O, data from the short-term 
regions of long-term tests; - - ,  calculated using equation (14) with 
/~ = 1, A,s = 7 x 104 s, Azs = 15.8; . . . .  , calculated using equation 
(14) with ~ = 0.95, Als = 5 x 104 s, A2s = 29.1 s 1-" 

ranges it can be modelled approximately by the equation : 

to = AstUd (13) 

where the constants A s and #, depend on the te range 
considered and #. values are, within experimental error, 
equal to those obtained using equation (10). Over wide 
ranges of te the variation of to with te can be described by : 

to = Als + A2st~" (14) 
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Figure 8 Long-term creep curves for three elapsed times te : . ,  experimental data ;  - - ,  predicted curves based on equations (1), (16) and (17);  
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where Als, A2s and/~ are constants, Als corresponding 
to the value of t o at t~ = 0. The constant # is the slope 
of the log to-log t¢ plot at long te and has the same value 
as/~ in equation (11 ). Plots of t o versus t~ were used to 
obtain A is (from the intercept) and A 2s (from the slope). 
As illustrated in Figure 7, a slightly closer fit of equation 
(14) to the data was obtained using Struik's value of 
kt = 0.95 than with # = 1. 

ANALYSIS OF LONG-TERM CREEP DATA 

During long-term tests (t >0.2t~) significant further 
ageing accompanies the creep deformation• Modifications 
are then required to the expressions for Do(t) and D,(t)  
to allow for progressive variations in certain of the 
retardation parameters• 

For the fl-process, the analysis of short-term data 
suggests that, whilst rp and n are essentially constant, 
ADa will decrease with increasing time during the 
long-term creep. Equation (2) must then be replaced by 6 : 

Do(t) = AD0(0)0a(t) + Oa(t - u) duu AD°(u) du 

(15) 

where ADo (0) is the value of AD o at t = 0 and the integral 
accounts for changes in AD o during the creep. From 
equation (7) we write ADo(0)= BtE k and AD~(u)= 
B(t~ + u) -k. For times t >> z 0, ~p(t - u) ~ ~,o(t) over 
most of the time interval u = 0 - t. Equation (15) then 
simplifies to : 

Dp(t) = n(t~ + t)-k~ba(t) (16) 

From the analysis of short-term data for the s-process, 
it is evident that ageing during long-term creep could 
involve either: (a) a decrease in AD, at constant r,  and 

m; or (b) an increase in z, at constant AD, and m; or 
(c) variations in both AD, and ~,. The extent to which 
the different ageing mechanisms may be involved has 
been explored by comparing experimental long-term 
creep curves with predicted curves for cases (a) and (b). 

Case (a): AD, variable, z, and m constant 
In this case equation (3) is replaced by6: 

D,( t )  = AD,(O)O,(t) + O,(t - u) AD,(u) du 

(17) 

where AD,(0) is the value of AD, at t = 0 and the integral 
accounts for the possible decrease in AD, with increasing 
creep time. From equation (9) we have AD,(0) = Qt~ r 
and A D , ( u ) = Q ( t e + u )  -~. After substituting these 
relations into equation (17), together with expressions 
for ~, (t) and ~, (t - u) according to equation (3), values 
of D,(t)  were obtained with the aid of numerical 
integrations. 

In Figure 8, experimental long-term creep data for three 
te values are compared with the predicted curves using 
equations (1), (16) and (17). Also shown are curves 
corresponding to extrapolations of the short-term data 
assuming no further ageing. All parameters were obtained 
from the analyses of short-term data and are given in the 
figure caption. Note that the predicted long-term 
compliances are substantially lower than the experimental 
values. The rapid convergence at long times of the 
predicted curves for different te is also inconsistent with 
the experimental data. These discrepancies could arise 
partly from an inability of the function ~, (t) to provide 
an accurate basis for extrapolating data to the long-term 
region. However, they are considered largely to reflect 
an overestimate of the ageing effects associated with the 
assumption of a te-dependent AD~. 
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Figure 9 Long-term creep curves for three elapsed times to : . ,  experimental data;  - - ,  predicted curves using equations (1), (16), (18) and (20) 
with AD, = 3 GPa  -1, Alw = 5 x 107 s, A2w = 1.08 x 104, m = 0.324. Values used for Dv~, za, n, B and k as in Figure 8 

Case (b): z, variable, AD, and m constant 
To predict the long-term creep behaviour in this case, 

we replace equation (3) by6: 

D~(t) = AD~[1 - exp - l~v] (18) 

where the integral 

fo lw = ~c= (u) 

allows for the increase in T~ during the creep deformation. 
In the long-term regions of the creep curves for t e = 16 

and 72h, the total elapsed times (4 + t) become 
considerably longer than 72 h. It is evident that the /~ 
value at these elapsed times is close to unity (Figure 5) 
and that an equation such as (11 ) is required to model 
the variations of t ,  over the wide ranges of total elapsed 
time in the long-term tests• Using equation (11) the 
integral becomes : 

fo du Iw = (19) 
Alw + Azw(te + u) u 

For/~ = 1, this equation has the solution: 

1 ( A2wt ~ 
I w = In 1 + (20) 

A z w  A I w  + Azwte/ 
Figure 9 shows long-term creep curves predicted from 

the short-term parameters with /~ = 1 using equations 
(1), (16), (18) and (20). The predicted curves now show 
little tendency to converge in the long-term region, in 
agreement with the experimental curves, but the 
predicted compliances are again lower than the measured 
compliances. Since improved fits could be obtained by 
allowing m to increase with creep time, these 
discrepancies may largely reflect inadequacies in the 
Williams-Watts function ~0, (t) as a basis for extrapolating 
short-term data to longer times in the glass-rubber 

region of amorphous polymers• Note, however, that the 
long-term data are significantly closer to the case (b) 
than to the case (a) predictions. This suggests that the 
ageing is associated predominantly with an increase in 
0t-retardation time, and that any changes in AD, are 
probably small or negligible. 

Application of the Struik-Kohlrausch function 
In applying the Struik-Kohlrausch function to the 

analysis of long-term creep, we replace equation (4) by : 

D(t) = rDu. 8 + D~(t)] exp I~ (21) 

where 

fo Is = to(U) 

Using equation (14) to model the variation of t o with 
total elapsed time in long-term tests we then obtain: 

du 
(22) 

Is = Jo Als + A2s(4 + u) u 

For/~ = 1, equation (22) has the solution: 

I s =  In 1 + A l s + A 2 s 4 /  
(23) 

Figure 10 includes long-term creep curves predicted 
from short-term data with # = 1 using equations (16), 
(21) and (23). Although the predicted compliances are 
somewhat lower than the observed compliances, the 
agreement between theory and experiment is within 6% 
and is substantially closer than that in Figure 9. Also 
shown in Figure 10 are long-term curves calculated using 
parameters from short-term data with # = 0.95. These 
calculations involved equations (16) and (21) together 
with the numerical integration of (22). For te = 16 and 
72h, the predicted long-term compliances are 1-2% 
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7 = 0.31. Fo r  each predic ted curve,  values  used for Duo, za, n, B and  k as in Figure 8 

higher than those calculated with kt = I and are thus 
slightly closer to the observed compliances• 

The discrepancies in Figure 10 between the observed 
and predicted long-term creep curves could partly involve 
inaccuracies in the form of the Struik-Kohlrausch 
function for extrapolating short-term curves to longer 
times (neglecting further ageing)• This may be regarded 
in terms of a possible slight dependence of y and t o on 
creep time t. In this context, accurate fits to the long-term 
parts of the creep curves have been achieved using 
equations (21) and (23) with parameters (y =0•33, 
Azs = 11.5) which differ somewhat from the 'short-term' 
parameters• 

An alternative explanation for the discrepancies in 
Figure 10 is that equations (22) and (23) do not allow 
for non-linear behaviour arising from stress-induced 
deageing. This could occur to some extent despite the 
low stress level of 5.1 MPa employed in the (static) creep 
tests• Our recent investigation of creep in PVC at high 
stresses 13 suggests that, for/~ = 1, equation (22) should 
be replaced by: 

fo  du t . . . .  t <. t m (24a) 
Is -Axs + A2st  e A ls + Azs t  e 

and 

I s =  + 
Als + A2ste ., Als + A2st~ + A 3 s ( U - t m )  

t m 1 [ A3s(t--tin) ~ 
- + I n  1 + 

Als + AEste A3s Als + AEsteJ 

t > trn (24b) 

Here tm marks the end of the time interval during which 
t o is essentially constant, or passes through a broad 
minimum, following an initial rapid deageing (decrease 

in to) by the stress• The parameter A3s equals the 
derivative dto/dt  during the subsequent reactivation of 
ageing and relates to the magnitude of the initial 
deageing. Note that Aas ~< Azs, that A3s and t m each 
depend on stress and t¢, and that in the limit of zero 
stress trn vanishes and A3s becomes equal to Azs. 

Figure 11 shows long-term creep curves calculated 
using equations (16), (21), (24a) and (24b) with 7 = 0.31 
and A2s = 15.8 obtained from short-term data. Values of 
tm were estimated as the times at which deviations from 
linearity were first apparent in plots of [ In { D ( t) / [  Du~ + 
D~(t)]  } ] 1/~ versus t. This procedure follows from the fact 
that the slopes of these plots give the instantaneous values 
of 1/t  o during the creep test xa. Values of A3s were then 
chosen to optimize the fits of equations (16), (21) and 
(24b) to the long-term data. Figure 11 illustrates that the 
long-term creep behaviour can be accurately modelled 
with realistic values of A3s. Further investigations at very 
low stress and/or  elevated temperatures should help to 
confirm the accuracy of the Struik Kohlrausch function 
in describing the creep of amorphous polymers in the 
short-time tail of the glass rubber region• 

CONCLUSIONS 

Creep curves obtained for PVC at 23~C and at times t 
between 10 -8 and 106 s have been modelled with some 
success in terms of compliance contributions from 
overlapping secondary (fl) and glass-rubber (~) 
processes• Each contribution depends on the physical age 
of the polymer as specified by the elapsed time te at 23°C 
between quenching from 85°C and the instant of loading• 

The fl-contribution has been described satisfactorily 
by a symmetrical function (equation (2)) derived from 
the Cole Cole equation• Physical ageing gives rise to a 
decrease in strength ADp of the//-retardation, consistent 
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Figure l l  Long-term creep curves for three elapsed times t~ : . ,  experimental data; , calculated curves using equations ( 16 ), (21 ), ( 24a ) and (24b) 
with Als = 7 x 104s, A2s = 15.8, ? = 0.31 and values for tm and Aas as follows: t e = 2.5 h, t m = 1 x 103 s, Aas = 12.5; t= = 16h, tm= 1 x 104s, 
A3s = 10.5 ; te = 72 h, tm = 3 x 104 s, Aas = 10.0. For each calculated curve, values used for DuB, zB, n, B and k as in Figure 8 

with a reduction in the number of active groups of 5.5% 
per decade of elapsed time. However, the~mean 
fl-retardation time and width of the disl~ibution are 
unchanged. 

In the or-region, the short-term creep curves (t ~< 0.2re) 
can be described in terms of functions of the 
Williams-Watts (equation (3)) or the Struik-Kohlrausch 
(equation (4)) forms. Analyses of short-term data suggest 
that physical ageing has a negligible effect on the width 
of the 0e-retardation time distribution but could produce 
either a decrease in the magnitude of AD= or an increase 
in the mean retardation time, or both. However, analyses 
of long-term data ( t>0 .2 te )  suggest that ageing 
principally involves an increase in mean retardation time 
at constant AD=. The long-term creep behaviour has been 
accurately modelled on the basis of the Struik-Kohlrausch 
function after allowing for possible deageing effects of 
the applied stress (5.1 MPa). 
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